2109230060

Reg.No		
Signature		

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, APRIL - 2024

RENEWABLE ENERGY POWER PLANTS

[Maximum Marks:75] [Time: 3 Hours]

PART - A

I. Answer all the following questions in one word or one sentence. Each question carries 'one' marks.

 $(9 \times 1 = 9 \text{ Marks})$

Module Outcome Cognitive level

1	Write any two conventional sources of energy.		M1.01	R
2	Match the followings:		M1.02 R	
	(i) Pelton wheel	(a) Medium head		
	(ii) Francis turbine	(b) Low head		
	(iii) Kaplan turbine	(c) High Head		
3	Write any two examples of conce	entrated type solar collectors.	M2.01	R
4	List any two factors considered w	while installing solar panel.	M2.03	R
5	List any two applications of wind	l energy.	M3.01	R
6	Wind speed at which wind turbin called	e starts delivering shaft power is	M3.02	R
7	List any two classification of wind energy system.		M3.02	R
8	Difference in water level between high tide and low tide of an area is called		M4.01	R
9	Write any two advantages of fuel	cell.	M4.03	R

PART - B

II. Answer *any eight* questions from the following. Each question carries 'Three' marks.

 $(8 \times 3 = 24 \text{ Marks})$

Module Outcome Cognitive level

1	Explain the biomass gasification process.	M1.04	U
2	Draw the structure of a parabolic trough-type solar collector and	M2.01	R
	label its parts.		
3	Describe the working of buck converter.	M2.03	U

4	With a diagram explain the principle of wind energy conversion.	M3.01	U
5	Compare Horizontal and Vertical axis windmills.	M3.02	U
6	Draw the schematics of the horizontal axis windmill and label its parts.	M3.02	R
7	A wind turbine rotates at a speed of 20m/s and has a blade length of 80m. Determine the power in the wind. Take air density as 1.23 kg/m ³ .	M3.03	A
8	Summarize power generation from tide using single basin system.	M4.01	U
9	Outline the concept of ocean thermal energy conversion.	M4.02	U
10	Describe the working of hydrogen-oxygen fuel cell.	M4.04	U

 $\label{eq:PART-C} \textbf{PART-C}$ Answer all the questions from the following. Each question carries 'seven' marks.

 $(6 \times 7 = 42 \text{ Marks})$

Module Outcome Cognitive level

III.	With a neat sketch explain the working of fixed dome-type biogas	M1.04	U
111.	plant.	1,11,0	
	OR		
IV.	Draw the schematic diagram of the flash steam geothermal power		
1 V .	plant and explain the operations.	M1.03	U
17			
V.	Compare between conventional and non-conventional sources of	M1.01	U
	energy.		
	OR		
VI.	Explain the floating drum-type biogas plant with a neat sketch.	M1.04	U
VII.	Draw a neat diagram of a flat plate solar collector. Explain its	M2.01	U
	working.		
	OR		
VIII.	With block diagram explain the working of a grid connected	M2.03	U
	photovoltaic system.		
IX.	A house has the following electrical appliance usage:	M2.04	A
	Three 18 Watt fluorescent lamp with electronic ballast used 4		
	hours per day.		
	One 60 Watt fan used for 6 hours per day.		
	One 75 Watt LED TV that runs 5 hours per day.		
	The system will be powered by 12Vdc, 110 Wp PV module.		
	Determine the following:-		
	1. Solar energy consumption in Whr/day		
	2. Size of the PV panel		
	3. Rating of Inverter		
	(Assume panel generation factor = 3.4 and a 30% loss)		
	(Assume panel generation factor – 5.4 and a 50% loss)		

X.	OR 4 Nos of 12 V, 100 Ah batteries connected in parallel are to be charged from a solar panel. Calculate the Number of 110 Wp solar panels required for this purpose. Assume charging current = 1/10 of ampere hour rating.	M2.04	A
XI.	With block diagram explain the working of standalone wind power generation.	M3.03	U
XII.	OR Explain the Constant Speed Constant Frequency Scheme for wind power generation.	M3.04	U
XIII.	Draw the block diagram of closed cycle ocean thermal energy conversion and summarize its operation.	M4.02	U
XIV.	Explain the principle of operation MHD power generation with a neat sketch.	M4.04	U
